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ABSTRACT

This paper presents a distributed FET model for
millimeter-wave frequencies and compares experimental
S-parameters with distributed and lumped model. In con-
trast with other circuit models which take distributed
effects into account, this new one allows to predict the
four noise parameters up to 40 GHz. An example is gi-
ven, that shows good agreement between theoretical da-
ta and S-parameters and noise figure measurements up to
26 GHz.

INTRODUCTION

With the movement to millimeter-wave frequen-
cies and the good performance of FETs up to 60 GHz,
sophisticated circuit models are required to precict S-
parametew values especially above 26 GHz where accu-
rate measurements of chip device are difficult. Moreover,
at high microwave frequencies where the device dimen-
sions become comparable to a wavelength, the simple
lumped circuit model is invalid and must be modified.

So, for a few years, several FET models have
been proposed, which include propagation effects along
device electrodes considered like coupled transmission
lines [1-4]. Althought eff]cients in predicting S-parame-
ters values, these models are not well adapted to descri-
be FET noise behavior.

In contrast, this paper presents an alternative
distributed circuit model, so-called “sliced model”, that
permits not only to predict small signal performance but
also noise parameters up to 40 GHz, with potential ap-
plication to low noise broadband amplifier design.

THE “SLICED” FET MODEL

As shown m ‘ig. 1, the “sliced” transistor model
is composed of N Identical sections sliced along the ac-
tual FET gate width W. Each section (two-port Q with Zg
and Zd impedances) represents a standard lumped model
of a common source MESFET with gate width W/N.

According to Fig.1, we have to look for a rela-
tion connecting the vectors (Ig ,Ido) and (Vg ,Vdo) which
represent the currents and volt%ges at the %T ports.

To do thislhwe start with an admittance matrix
description of the L section, as illustrated in Fig.2 :

along with the Kirchoff relatlons :

(1)

vgi=vgi_l - Zg Igi.l

Vdi=Vdi_l - Zd Idi_l

(2)

(3)

where

Zg=Rg + j Lg w and Zd.Rd + j Ld u

are the gate and drain parasitic impedances respectively.
Recurrent relations between gate and drain currents can
be written as : i-l. .

Igi_l = Igo- k~i ‘gk

1-1
Idi_l = Ido- ~ idk

k=l

(4)

(5)

After straightforward algebraic jmanipulation of
Eqns.( 1) through (5), a matrix relat~~n is obtained bet-
ween voltage vectors of first and i sections :

C:)’’A4:J)‘(B;(::) (6)

where (A. ) and (Bi) are 2x2 matrices whose elements are
functions’of Zg, Zd and Y-parameters defined in (1). Al-
ternative forms for (4) and (5) can be written as :

N
ldo . ~ idk

1, *

(7)

(8)
Kzl

Substitution of Eqns.(1) and (6) into (7) and (8)
for each value of i ranging from 1 to N, gives the total
admittance ;matrix (YT) of the FET :

($)“(YT)c::) (9)

Ujmg Y to S-matrix transformation, the scatte-
ring parameters of the “sliced” model is then calculated
for a determined value of N, and fitted witlh experimen-
tal S-parameters measured up to 26 GHz. The plots for
S11 and S21 (magnitude and phase) against [requency
(Fig.3a,3b) all show a g~od agreement with experimental
values and so allow realistic prediction of FET behavior
up to 40 GHz.
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Fig. 1 : “Sliced” Transistor Model
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Fig. 3-a : Magnitude and phase of S1J
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Fig. 3-b : Magnitude and phase of S21
Fig. 3 : Optimized theoretical and experimental S-para-
meters from 1,5 GHz to 26,5 GHz
— ‘Isliced!! model (N.5) +++ measurements

COMPARISON BETWEEN LUMPED, “SLICED” AND DIS-
TRIBUTED MODEL

Taking into accomt propagation effects on gate
and drain electrodes at millimeter waves needs the reso-
lution of two or more coupled differential equations to
obtain S-parameters [1]. In addition, noise parameters de-
rivation from a fully-distributed model including noise
sources turns out to be very complicated if not impossible.

On the other hand, the lumped model universally
used in describing small-signal and noise FET behavior for
X and K-bands fails out when gate width to wave-kmgth
ratio is higher than 0,1.

In constrast, this condition is always satisfied with
the “sliced” model since the actual FET is considered to
be electrically equivalent to N fictitious identical FETs
in parallel, each of them having a gate width as small as
required by a proper choice of IN.

Analytical treattnent is based on Kirchoff laws

applications and yields scattering and noise FET parame-
ters with a rather tedious but straightforward imanipula-
tion (see section HI).

The interest of the sliced model clearly appears
in Fig.4 where the S-parameters of a FET (Thomson) have

been plotted for the three models under consideration :
S11, S22 on the Smith chart (Fig.4a) and S12, S21 on a

.th
polar chart (Fig.4b).

Fig. 2 : Electrical description of the I section from Up to about 26 GHz, the curves are all superpo-

the “sliced” model seal, a fact which confirms the negligible propagation ef-
fects on transistor electrodes. Above 26 GHz, the lumped
model S-plots spread out from the other plots which are
still close to each other.

Fig. 4-a : S11 and S22 on the Smith chart
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Fig.4-b : S12 and S21 on polar chart. Radius is 20 fcr

s12 and 2 for S21
Fig. 4 : Comparison between lumped, “sliced” and distri-

buted models from 2 to 40 GHz
— lumped model --- “sliced” model (N=5)
------ distributed model [R6f. 1]

NOISE MODELLING

The “sliced” model is extended to includet~he
two types of noise sources shown in Fig.5 for the I sec-

tion :
intrinsic FET noise sources i with cor-

ng ‘ ‘nd
relation coefficient C.

- extrinsic noise sources i , i
tg td

and i
ts

related
to FET parasitic resistances.

These are supposed to be uncorrelated from one
section to the other and are characterized by their mean
square values [5] [6] :

~12=4k To AfW2;~2 R

l~12=4k To Afgmo~

(lo)

(11)

litl’ = 4 k To Af f@-l with j= g,d,s (12)

The coefficients P, R and C, which are depen-
dent on FET topology and bias conditions, need to be de-
termined from noise measurements. For that, a relation
between the noise factor F, the noise sources and the
termination impedance Z in at the FET input is derived
from the method previously described in section I.

For each section of the “sliced” model (FiR.5) a
matrix equation can be written as :

c!) ‘(Ai)c::)+(B~(:j +(Ni)(::) ‘(13)

where all the V’s and I’s are noise voltages and currents,
the index o indicating the actual FET ports. The (A.) and
(Bi) matrices are fefined in (6). The current symbol: il,
and 12 have different meanings according to the following
cases :

intrinsic gate and drain noise:i =i
1 ng’ ‘2=ind

thermal noise from Rs:i =i .i
12ts

- thermal noise from Rg, Rd:i =i , i =i
ltg2td

- thermal noise form termination-impedance
Zin:i1=i2=0

The (N. ) matrix is different for each case and
its elements are lrelated to Zg, Zd and Y-parameters.

Including the noise current sources in Eqns. (1)
to (3), and using (13), a matrix equation between noise
currents and voltages at the FET ports is obtained as :

(;)=(Y+C)’(NT)(::)(14)

where (Y ) is the total noise less FET adrnittancematrix
and (NT) ?s a noise matrix depending on the il and i2
currents.

Now, if the FET output is matched and its input
loaded by the impedance Zin, Equation (14) can be trans-
formed into :

‘CT)(::)‘(NT)(:) (15)

From resolution of Eqn.( 15), an expression for
Id. is obtained for each vector (i ~,i2). The available po-
wer at the FET output, depending on I Id 12, is then cal-
culated in the four cases. The sum of tf?ese four powers
divided by part of them due to the termination impedan-
ce Zin gives the noise factor F :

F. I+{K Ii 12+K2~\2+2 Re(K K* L-T*)
1 ng 12ngnd (IL)

+K3~\2+K4~dl

r

2+K5~12 }/K6~12 ‘L”’

with Iein 2 = 4 k To A f Re(Zin) (17)

The coefficients KJ are depending on impedance
Zin and CT and N -parameters. The coefficients P, R

T“and C are then de ermmed by fitting the nc,ise factor
derived from the “sliced” model (Eqn.( 16)) with experi-
mental values.

For example, ten ,measurements of F were done
for ten Zin values at five frequencies ranging in the 18-
26 GHz band. Results are presented in Table 1 for two
bias conditions ; Vds.3V and Ids=either Idss or Idss/3. It
will be noted that the P, R and C values were obtained
from averaging process over the ten measurements. De-
termination of these three coefficients allows to eva-
luate noise factor F in order to determine FET noise
parameters as explained in the following section.

Table 1 :

@ .

——

[ ~f’”F-
Si.,

P R c
conditions

1

3V.ld.. 0.32 0.09 0.83

-JJ

i

3V.ld,./3 0.13 0,03 0.73

—

Optimized coefficients P,R and C for two
bias conditions

Fig. 5 : ith section of the “sliced” model with noise
sources
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DETERMINATION OF FET NOISE PARAMETERS

As is well known, the FET noise behavior can be
characterized by the four noise parameters Fo,Rn,Ro,
X accordin~ to the eauation :

0
Rn

[( Rin-Ro)2 + (Xin-Xo)21

‘=FO+ Rin x (R; + X2
where

0)
(18)

F noise factor
Rn equivalent noise resistance
Zin=Rin+j Xin input termination impedance
F. minimum noise factor
Zo=Ra+j X optimum termination impedance
that gives ‘minimum noise factor
Determination of these noise parameters obeys

to the following steps :
1) Derivation of Eqn.(16) with respect to Rin

and Xin, then cancellation of the two expressions
aF aF ive5 ~ and x——

aRin and aXin g o 0
2) Substitution R , X for Rin, Xin into Eqn.(16)

yields the minimum noise ~act% F .
3) Computation of F50 fr~m Eqn.(16) with Zin.

50$2 and identification with Eqn.(18) gives Rn.
Results for minimum noise figure F and equi-

valent noise resistance Rn are presented in #ig.6 and 7,
for the two bias conditions (Idss and Idss/3) and frequen-
cy ranging from 18 to 40 GHz. Experimental values of
F and Rn have been extracted from noise figure mea-
surements up to 26 GHz according to the method descri-
bed by Mitama and al. [7].

Theoretical curves are plotted for the “sliced”
model (solid line) and the lumped model (dashed line).
Fig.6 shows a good agreement between theoretical and
experimental values of minimum noise figure. The two
straight lines curves intersect according to the decrea-
sing of cut-off frequency with smaller drain current.

Moreover, the spreading of the two types of
curves around 26 GHz confirms the limit of lumped mo-
del validity previously shown in section 11.

In Fig.7, the fit between experimental and “sli-
ced” model derived Rn values is reasonably good, but the
evolution of R:l against frequency is difficult to explain.
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Fig. 6 : Minimum noise figure against frequency from
18 to 40 GHz
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+++ experimental values — “sliced” model (N=5)

--- lumped model
(a) Vds=3V,Ids=Idss (b) Vds=3V,Ids=Idss/3

CONCLUSION
A new distributed FET model, so-called “sliced”

FET model, is presented in this paper, that allows to pre-
dict S-parameters up to millimeter-wave frequencies from
microwave measurements. In addition, the four noise pa-
rameters can be determined up to 40 GHz from noise fi-
gure measurements. At our knowledge, it is the first time
that a FET device is so fully characterized with a distri-
buted circuit model, t] mt exhibits good agreement with
experimental data up to 26 GHz.
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